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By Hsrvard Lomax and Loms Sluder
SUMMARY

A method is presented for finding the 1ift, moment, and drag on
three-dimensiongl wings or bilplanes with supersonic edges and a straight
tralling edge normel to the free stream. The minimum wave drag for fixed
1ift or volume is given for several speclal cases. Simple gpplications
of the method may provide some measure of the degree t0 which more abstract
methods for finding minima can be relied upon as a measure of optimum real
systems.

INTRODUCTION

The importance of wave interference in supersonic flow hass been
clearly demonstrated, but methods for studying its effects on general
configurations are quite complicated and lead usually to numericel pro-
cedures. The analysis of even the simplest interfering systems is some-
times involved. However, even though involved, such analyses can at
least be carried out and results applying to more than Jjust specific
combinations cen be achieved. These results are useful principally,
perhaps, in providing a background of experience needed to extrapolate
the meager and laborioue calculations for the more practical but more
complex configurations.

Two different types of interfering systems iIn linearized supersonic
flow are considered in this report: one, two-dimensional wings in any
number of planes; and the other, three-dimensionsl plane wings or biplanes
with supersonic leading edges and tralling edges normal to the free-stream
direction. Both of these cases have received previous attention (see
refs. 1 through 5) but not, apparently, in the manner presented in the
following.

LIST OF IMPORTANT SYMBOIS

an see equation (20)

c wing chord
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wing drag coefficient based on plan~-form ares
wing 1ift coefficient based on plan-form aresg
drag

distance of wing surface from cember line

&G
2m m

where <2n> and. <2m> sre binomial coefficients
( 2B)an 2m m

1ift

moment

free-stresam Mach number

free-gtream dynamic pressure

wing semispan

fixed space within which 1ift and volume elements are confined
distance of upper wing from =z = O plane

perturbation velocities along x and z axes

wing volume

Cartesian coordinstes

distance from xz plane to right edge of Mach envelope

angle of attack
My?-1

wing slope
see equation (22)

conormsl
Bs
c

wing thickness ratio
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P perturbation veloclity potentisl

Bor, see equation (17)

VELOCITY FIELDS IN TWO-DIMENSIONAL FLOW

The anelysis of the weve equation for two-dimensional flow is
extremely simple and the formal presentation given here ls intended
mainly to serve as an initiation to the similer snalysis used in the
succeeding section on three-dimensional flow.

A general solution (which follows from an applicetion of Green's

theorem to the wave equation) to the two-dimensionsl weve equation for
the perturbation velocity potential ¢, namely,

BP9, = O (1)

is implied by
e pe Moch lines

1 S¢ _ ~——
ngyav |as| =0 (2) AV g NN

where s is the boundary of a closed
area and v 1s the conormal to s.
For our purposes s 1s composed of

stralght line segments parallel either
to the free stream - flowing in the
x dlrection - or to characteristic

(Mach) lines. The symbol 7y then
takes the form:

1 along the free streem

B along a characteristic line

Let us apply equation (2) to firnd
the veloclty potentlial between two
interfering wings - for example, at
the point P in sketch (a). We can
immediately write the four nonredun-

dent equations
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L el i 2 |as| =
B f r& lesl =3 f73vldsl'o
PBADEFP BACB
) (3)
B ov p v
PBGFP GAHG - J
Characteristics which contain the four unknowns @, 95, Pp»

and @y (meaning the value of the potential at

¢onormals the points used as subscripts). The conormal to
a line parallel to the free stream is the sane
as the normsl. The conormal to a characteristic
lies along the characteristic as shown in

P sketch (b) (the direction is determined, essen-
tiglly, by reversing the sign of the x compo-
nent of the normel). Hence, the first integral
in equation (3) becciiest

Normals

Sketch (b)

Along the leading characteristics ADE +the potential is zero so this
equation reduces to

B F
quP-ch-qJF-%f wdx1+%£ W dx; =0 (5)

A

IThe element |ds| 1s always positive - fixing the positive sense of
the dx integrals. The positive direction of the ds integrals is
imaterial since, along a characteristic line, the sign of ds divided
by its conormal is the same for either choice of positive direction.
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Evaluating the other integrals and combining, one finds

G B F
lf 1 1
= = wd.xl+—f wdxl-—f w dxg
B Uy B U B Jg

or differentiating with respect to 2z and x, respectively, teking into
account the dependency of G, B, and F on the point P(x,z) .

Vp = -Wg + Wp + Wy (6)

up = % (g + vg - ¥p) (7)

Equations (6) and (7) show
that w and u at any point depend .
solely on the slopes (the wing Upgoing

slope by linearlzed theory is Characteristic

Ww/Us) of the wing surfaces at the ~ - from P

point met by the reflecting for- N N 0™

ward characteristics from P. N, S AN / 7 AN

These equations can easlily be gen- U“-—> >\’ _\.¥'__ N

eralized to form an expression for AN AN >P

the induced velocities in en arbi- 3,/ &~ N d

trary two-dimensional linearized = - No” &
N

flow, Let wyj represent the X
value of the vertical velocity Wings Downgoing \

given by the wing slope at & point .
where the upgoing forward charac- Characteristic

teristic from P reflects from a from P
wing surface, see sketch (c), and
let wdi represent the same for | Sketch (c)

the downgoing characteristic.
Then the value of wand w at P

are simply

n m

=) (w4 ) (D (®)

o] (o]

n m
Up = -JE- z (-l)i Wui - z (-l)lwdi (9)
(o] (o]
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0o If the point P 1ies on the wing
75 surface, these equations simplify.
7N ~ In such a case equation (8) becomes
e NCUp an identity and equation (9) becomes,
4 2 //’ \\\\\ for a point on the upper surface of
a W ee sketch (4
LI B N p & wing (s (@),
4 AV n
J / 1
up =1 -Wp + 22(-1) Wy
B i
L } ;
~
,II \\ // P (108.)
y \\ //
/// N , pown &nd for a point on the lower surface
e AN S of a wing
2 AN //
x m L
o 1
Uy == Jwy = 2 -1) w
p =3 | ¥ }:( V Vg,
Sketch (&) 5)
(10v)

Since the wing slope A 1is glven by
A= W/Uoo

and the pressure coefficient by e - - -

cp = -2'U./U°°

the forces and moments on eny system of wings in a two-dimensional
linearized flow field can be determined by the above equations.

OPTIMUM TWO-DIMENSIONAL LIFTING SYSTEMS

The conditions for optimum 1i1fting systems in two-dimensional
supersonic flow are easily obtalned. By optimum systems we will mean
those which have minimm values of Cp/BCr2 under certain restraints
and neglecting friction drag.2 One of the simplest means for express-
ing these optimums is to study the momentum flux across control surfaces
above and below the wings.

2Tt must be emphasized that friction drag is of utmost importance
in the practical consideration of bpiplanes.  This report, however, is
devoted to the study of some of the properties of nonviscous fields.
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Consider a group of wings confined within a given space S, such a8
that shown in sketch (e), and an X,z coordinste system fixed somevhere

}* ;42 r; ‘1/__

Sketch (e)

relative to S. Then the 1ift, drag, and pitching moment about X=7=0
are given to the lowest order by

L 2 T‘O‘ Llf
_— = JF uodxgy - uydxy (11)
G U \JT,
o 2
M 2 Lo! Ll'
- _\/ﬁ XoUodXo ‘\/ﬁ X1u3dxy (12)
o \J1g Iy

EB 1 th
D
w02 \/1‘0 uoZdxo + "4:1 uz®axy (13)

where the xg, zZo and X3, Za coordinate systems are above and below 5,
respectively, with thelr origins on the Mach lines from x=z=0, and Uo
and u; are the values of u alomg Xo and X, respectively.
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Employing calculus of variation techniques, we find for a minimum
drag

ﬁ
% = - 2—]"3 (Ko + XoK31)

(1)
by 1
Te = 28 (Ko + %1K3) J

vhere K, and K; are constants fixed by the given 1ift and pitching
moment, If the upgoing and downgoing waves from S are equally wide

and the pltching moment is to be zero about the center of their inter-
gection, K3 1is zero and the optimm u. variation is simply a constant.
This 1s the case for the Yordinary" unstaggered Busemann biplane asccording
to linearized theory.

In any case, by setting X; equal to zero, one obtains results
representing the absolute minimum velue of Cp/BCr®. It follows
immedigtely thet this minimum is given by

D/qy _ 1 .
B(L/aw)®  2(1g+11)

(15)

wvhere 1o and 13 are the widths in the free-stream direction of the
waves from S.

bt 2¢ — ;J}, Howevér, the potential-flow minimum
/ / given by equation (15) is not always
, ’
y yd e realistic for the simple reason that it
7 o ; cannot always be attained by a real
AN Jid system of wings with finite chords. A
—_— T N simple example of this 1s the staggered
< biplane shown in sketch (f). For coef-
N LN fleclents based on the wing chord,
\\ N equation (15) states
\\ \\
SN D) .1
P ¢ BCL2 6
N N\
N min

Sketch (f)
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It is easily verified by means of equation (9) that this minimum cannot
be attained 1if both wings are closed.® TIn the particular example showm,
the upper wing was taken to be a flat plate, in which case the lower
wing must be an open wedge.

This difficulty with closure can b _ ol
reedily be overcome in two-dimensional , 2/0 j
flows by adding another restraint - e 7 //
namely, that the net mass f£low through / e 7 /
the enclosing control surface be zero. %/ Ve
Systems of closed, two-dimensional wings Ucol \ 2 //
having minimum cD/BcL2 (unrestrained as N N/
to pitching moment and friction drag) N \
have been thoroughly studied by Licher N Zoec N
in reference 1. §She shows that the opti- : N N N
mun palr of closed wings in the relgtive hT ¢ —J\\

positions shown in sketch (g) is com-
posed. of two flat plates, the lower one
at twice the angle of attack of the

upper, and the minimm value of Cp/BCt2 Sketch (g)
(based, again, on the wing chord) is

b _3

BCrZ 16

The prinecipal point to be made in the gbove discussion can be
expressed as follows: Bystems having a minimm drag under the sdle
restraint that the 1ift (and moment) be fixed may be composéd of wings
that

(1) Necessarily have some volume
(2) May not close

The stressing of this point msy seem unnecessary since, for example,
it has been known for some time that 1ift and volume can have favorable
interference when the 1ift is carried gbove the volume. In faet, in
two dimensions, maeny multlplana.r combinations of 1ift and volume neces-
sary to give minimum CD/BCL are 1llustrated in reference 1. In studies
of optimum flelds in three-dimensional flows, however, these issues are
more obscure and the gtatement of the problem is sometimes dominated by
experience with the vast numbe? of plendr probléms whéere 11ft and volume
always separate. Consider, for example, the minimizstion technigues
introduced by Ward in reference 6. Aside from the condition that the
drag be minimized for a fixed 11ft, the added réstraint of mass continuity
across the control surfaces should be imtroduced since, in general, some
volume will be required in a three-dimensional flow to obtain a mini-
mum CD/BCLZ. Of course, this is only a necessary condition for existence;

3Tt can never be attained by closed w:Lngs bhaving enclosing Mach waves
of unequal widths.
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a sufficlent condition would require that the volume be everywhere resal.
Illustrations of this difficulty are given in the next section.

A study of two-dimensional flow provides little experience for the
problem of M"real volumes™ in the general case. This is because mutually
interfering multiwing systems in two dimensions always have solutions
that have no net 1ift or wave drag but have arbitrary amounts of volume,
within, always, the l1imits of the assumptions bounding the theory. Since
these solutions all have zero momentum flux everywhere extermal to their
enclosing Mach waves, they can be added (in linearized theory) to any
other solution without affecting its 1ift or drag but providing, for the
whole, a real system of wlngs. 1In the three-d.imensiona.l case these zero
1ift and drag solutions do not generaslly exis'b however, and the existence
problem is much more complicated.

THREE-DIMENSIONAL WINGS WITH SUPERSONIC LEADING EDGES
AND STRATGHT UNSWEPT TRATLING EDGES

Derivation of Basic Equations

The linesrized equatlion governing three-dimensional supersonic flow
is

B0y = Pyy = Py = O (16)

Let us consider flows that are symmetrical gbout an xz plane and place
the x and z axes in the plane of symmetry. Then we use the definition®

-
Oy = f ¥y o(x,y,2)ay (1

Multiplying equation (16) by y2 and integrating each term from O
to ¥y, we find

%) three-dimensional zerc lift and drag solution for a finite epace
probably exists only when the space 1s completely enshrouded by & surface
having outer boundaries parallel tc the free strean.

SThe definition can be extended to odd powers (in the sense that the

whole flow field expands in the form Iy[ ), provided the first power is
not used. Incidentally the term ]y] is of considerable interest since
it appears in the study of a delte wing, Unfortunately, however, to
use this method on s flow containing directly the term ]’ | the value
of o(x,0,z) is required.
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Baq’gnxx - ¢2nZZ = ( $l>y yan + 2D.(2U.-l) an_g
r

where (Bcp/av)yr is the conormal derivative of ¢ on the surface y,.

Since this is a characteristic surface, the conormal lies along the sur-
face and the term (Jp/dv)y ~ is zero. Hemce, our basic equation reduces
to T

524"211;0( - QZDZZ = 211(2]1_1) ¢2D.—2 (18)

Let us consider one surface of & wing located in the plsne =z = t.
The 1ift on this surface 1s given by

c Yr 29.(x,¥,%
Ji - izh/\ dxk/n Qx( S ) dy
% o o Ueo

where c¢ is the root chord and the upper sign applies if it is an
upper surface and the lower sign if it is a lower surface. This becones

c
- 3

£ o Qo (x,6)8x = £ 2 0o(c5t) (19)

o

£ e

Similarily, the moment and drag are given by the equations

M y [
== * o l x@ox(x,t)d.x
c Ir 20, (x,¥,t
.2 = :sgf d_xf K(x,y) M dy
Ao o o Un .

If the surface slope 1s expanded in the form

A = ag(x) +.a.2(x)y2 F oo .. o= Eazﬁ(x)yzﬂ (20)
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then

C
Tevg ) [ cetmmnbiax (21)

. Our problem is now to find expressions for ¢on and &zn, in terms
of Aon(x), where Aon(x) is the 2nth span moment of the wing slopes
glven by

Y-
en(x) == (%=m) f ¥ yem(x,y)ay (22)
= (o]

Soclution of Equations

Single wing.- Flrst let us consider the upper surface of a single
wing. The general solution to equation (18) can be written in a form
analogous to equastion (2), thus

1 3% 1
B f 7—5% lds| =35 f 2n(2n-1) don-2(x1,21)dx1d2; (23)
8 A
2z where A 1s the ares enclosed by the
'# Initial Mach wave contour integral.
// Proceeding as in the solution of
/ equation (2), we apply equation (23) to
a7 the areas PABCP and BOCB in sketch (h).
VaN This yields two equations with the two
// \\ unknowns <I>2nP and dﬁgnc. Eliminating
L0} -
/// \\\ ,/ X
/s
o '}’ —

A”{x,} given on x, axis

Sketch (k)
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X-pBz

Um
Oonp = - Y l: Aon(x3)dx; +

-E'M;Lg-lz- If an_gdxldzl + \‘/:/‘ Fon-odx:475 (2)-[-)
PAOCP BOCB

Equation (24) can be greatly simplified. Consider, for example s
the cases n =0 and n = 1, thus

x-8z
U,
o = - = f Ao(x1)dx,
B Jo
x-z
Uso
@2 = - — Ao(xz)dxs +
B Jo
Xo-Bza X2-Bz2
1 Uo Uy
B dxpdzo oy Ao(xq)dxy + dxodzp ey Ao(xp)axy
PAOCP © BOCB °
Reversing the order of integration of 1 2
the last two Integrals gives .
7/
x-Bz //
U,
02 = - = f Ap(xz)dxy - //
B o JRAN
/ N
X-Bz // {
U, 4 P(x,z)
-Bﬁ, f Ao(x1) (Aztoho)dxy /\/ f
o} , 7/ \\ A‘:E
s !

L/ A, !2
vhere A; and A, are the areas ] —~—
defined in sketch (i). One can ~— X
readily show that fe—x—-Fz

Sketeh (1)
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Ay + 2hg = -2'15 [ (x-x1)2-p222]

Hence,
x=-Bz x~-Bz -
o = - S ‘/p Ao(xy)dxy + ‘EE \/p [ (x-x1)2-pZ22] A0 (1) dxy (25)
B fo] EB (o]
Let -

k
- (28) ™

and equation (25) can be generalized to the form

n x-B(z-t)
dop = - Pg-" ko f [(x-x1)2-82 (2-4)2T hem-em(x:)dxy  (26a)

m=0

when P(x,z) is above the wing as in sketch (J) or

}2
7/
7/
/7
Vd
/7
~ P(x,z)
“__.'__',/ ,// 2
T\g —
N
g \\\
| X
i

Sketeh (J)
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n x-B(t~-2)
Oon = =2 z ¥am f [(x-%1)2-82(+-2)2] Aen-zm(x1)dx;  (26b)
r

when P(x,z) is below the wing.

Biplane.- A solution

to equation (18) for the %4 [X-ﬂ(3f-2},f]
flow about a supersonic- -
edged. biplane can also be [x ﬂ (t+2z) ’ f ]
derived. This solution n
x=L(t-2z),¢
was determined by means ey [;.’fi /s ]
of equation (23) but the N AN 7N
details of the derivation N / \&/ N
will be omltted since the RN 2N N
derivetion can readily be N\ // \\ SPix,z)
checked by showing that _L N, N T
it satisfies the original . > !
equation. Returning to D
the notation introduced [X "/8 z,0 ]
in sketch (c¢) for upgoing [X- Blet-z },0]
and downgoing characteris-
tics from the point P (see _
sketch (k)), one can show Sketeh (k)
w n x-B(z-1t)
U,
0 = - 22) N (Dl [ o) 05102 gy gp(a)ans +
i=0 m=0 ry Or TIg
©w n x-B{t+it-2z)
Uoo 1 2_p2 2
B Z Z(-l) Xrm f [(x-x,)=-B=(t+1t-2) =] Ad_zn_zm(xl)dxl
i=0 m=0 r; Oor Yo

(27)

where Ay and A3 &are the values of A at the points where the upgoing
and downgoing characteristics from .P reflect from the wings and the
sumetion with respect to 1 1is continued until the reflecting character-
istic passes out the front of the biplsne.

Drag for Fixed Volume

Single wing.- The drag can be expressed in terms of the wing geometry
by substituting equation (26) into equation (21). Assuming the wing lies
in the z = O plane with its nose at the origin (r=t=0 in sketch (J)),
we can simplify equation (26a) to the form
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U
0} = - =
e B

Il

Now if the slope of the upper surface 1s given by

[>¢]

Ax,y) = zagk<x)_y2k

k=0

then _—

zn+2k+1 .
fen = }: oo cax(®)

< . _
¥mn f (x-x1) ZmAan—zm( x7)dx;
o -

NACA TN L232

(28)

(29)

(30)

and the drag of the upper surface can be expressed in terms of the a's

by

) [ n ’
2 - L S * e VR 2md2k41-
W B Z z Z 2n+2k+12m I 8zn(x)ax — £ (x-x1) " yr Maok(*1)dxy
=0

n=0 k=0

or, alternstively, by

% %Z Z 2n+2k+l f 8o () 8oy (%) 7 22 2 1gx 4

o
n=o k=0

- omk ¢ x _ 2m-1
R
o] o]

2n+2k+ 1-2m
M=]

(31)

asp(xy1)dx)

(32)
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As a specific example, let the wing lesding edge have the parabolic -.
shape shown in sketch (1). If h(x,y) represents the helght of the upper
surface above the 2z = 0 plane, one can set

-

Wing y

plan form -
_cy®

Sketch (1)

N RGO

With this representation the upper surface must Ilie in the z = 0 plane
along the leading end tralling edges.

As the simplest case one can seek to find the shepe which will have

the least drag for a given wing volume when n = O; that is, when the
only freedom in sectlon varietion is in the x direction. In this case

SIc]

oM

§
It
o[>~

Ay [(1+1) -

1 N X . X -2
82 =<5 ZAi [-i + = (1+1)] (E)
5)
and one can show
b __ Z zAiA K1 - (34)
quca gL _

o O
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where 1if
o=£2 (35)
and
my = i+d
no = 14
_ 6o 15+10mo+8no 128 1
K13 =75 [(2m0+3)(2mo+5)(2mo+7):‘+ 30 [(2'110-*5)(21110+7)(2lno+9)] (36)

Since the volume of the wing above the 2z = 0 plane can be expressed as

16 o N Ay
V=730 /, [@5) (2e) (37)

the set of simultaneous equations vwhich minimize the drag for a fixed
volume can easlly be derived. Carrying out these calculations, one has
for the minimum drag of a wing having sonic tips (i.e., o = Bs/c = 2)

D = 13-85 - i . . (38)

%
w (EF)

Actually, the series converges so rapidly that this is the value
given by the first term. Hence, with no freedom permitted y, the

equation
aeo zs)[z(z)jﬁ!(ﬁé)
c c 8 e3 \ 32

is, practically speaking, the equation of the optimum shape for e fixed
volume above the plan form shown in sketch (1). This is not, perhaps,
surprising since it represents & wing having a biconvex section at all
span stations and this is the optimum section, for a fixed volume, on
a two-dimensional supersonic wing.

Biplane.- To initiste the study of the biplane, the two-dimensional
case was studied. Of course, 1t is well known that, according to linesr-
ized theory, a two-dimensionel biplane can carry an arbitrary smount of
volume with no wave drag. However, if the wing sections are constrained
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to those which can be described only by polynomisls of finite degree, a
small amount of wave drag can persist. Coanslder the two-dimensionsl
biplane composed of the section given in sketch (m).

The equation for
the drag can be constructed using equations (9) and (13).

condition that the volume be fixed, one finds a set of m+ 1
neous equations.

Imposing the

simuita-
Let Do be the wave drag given for m = O (i.e., for
e biplane with biconvex section), then Dp/Do 1s shown in sketch (n).

LZ

¢

—————

-]
j

by ,-cn-gx?’;o A x)”

Dl —

z - X)X X7
hb-\c;(l c’(c’o A,

—

Mm——

Sketch (m)
|
I"'--'l"[\‘
i
1
i
o 'u
|
l
1
|
{
1
]
bt ot 1y —
o / 2 3 4 5
m
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Notice the large reduction in drag
brought about by increasing m
from 1 to 2. The corresponding
shepe change is shown in sketch (o)
and the resson for the large reduc-
tion is made clear by studying the
superimposed section slopes (e.g.,
the negative slopes of the forward
portion of the upper wing and the
posltive slopes of the aft portion
of the lower, according to eq. (9))
shown in the lower part of the
sketch., In the renge m = 5 and 6
the value of Dy/Do vanished,
practically speaking (was equal

to 1/1T4T79).

We must be careful to reallze
thet the wave drag shown in
sketch (o) is the drag of the
interioxr part of the biplane in
sketch (m). If the exterior sur-
faces can be made stralght and
parallel to the free stream, this
is the total wave drag of the
biplane. However, for the m =2
or 3 case the exterior surfaces

Drag proportional to squared cannot be straight since the
ordinates of dashed curves starting wing slopes are negative
(or positive for the upper wing).
Sketch (o) Although the additional wave drag

incurred by making the outer
surfaces real would be small, this illustrates how care should be used
in estimating the minimum drag of real systems from mathematical minima,

The interior drag of & three-dimensionsal biplane with the plan form
shown in sketch (1), heving sonic tips (2¢/B = &), a gap to chord ratio
of 1/28, and sections given by

newe(2-2)[E- (&) iﬂn@n

was also studied. The results were vwhat one might expect from & consider-
ation of the two-dimemsional biplane. Here, of course, in contrast to
the two-dimensional case, there is & nonzero lower bound to the wave drag
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for a fixed volume.

Values of Dp/Dy up to m = 5 are shown in
sketch (p) end the section shapes at the root chord are also given.

Since no significant varlation could be detected for 2 S m < 5, the

results suggest that this is close to the final minimm. Notice, again,
that the initial slope of the lower wing is slightly negative.

I\
,'r'-—-.\
T
\
\
Ln \
Do ]
\
‘Ff I =
o / e 3 4 5
m
m=2345

mz= 0,/

Section shape
al wing root

Sketeh (p)
Drag for Fixed Lift

As & final example, a three-dimensional wing with the plan form

shown in sketch (1) (again sonic tipe and a gap-chord ratio of 1/28) was

studied for the condition of minimum drag for a fixed 1ift. The section
shapes of the two wings were taken to be
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which at the root section

for m = 0 represent the double

wedge section shown in -
sketch (q).

Two~-dimensional wings with
sectioneg like those shown have
& minimm velue of Cp/BCr7
equal to 3/16 which occurs when

Ty = Tu

=1a
2
and is independent of Ty + Tye
We recall from the discussion
in the first section on the
linearized version of the iwo-
dimensional biplane that any
amount of volume can be cerried
by real closed wings to obtain
the velue Cp/BCr2 = 3/16. .
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The situation appears to be
quite different for the three- - - - ‘ o
dimensional biplane with the plan
form and sections described above. Two— dimensional
One can show that the 1ift is 2F /
independent of the values of the
An's and Bph's. When these are : Gp
optimized on the basis of msking

the complete (interior and exte- ﬂcf / /U; per wing a Flat plate

---------- > o o e e S = - —

rior) wave drag a miniwmum, the

resulting equations show the low- I “Upper wing with negative

est Cp/BCr2 occurs when T3 - T, - volume
is some function of o and when

T3+ Ty = 0. But this describes
in every case an unreal wing for
any given volume. 1In all cases
for the optimum, the upper wing ! i -
had negative thickness equal in o / m 2
magnitude to the positive thick-

ness of the lower wing. The nin-

imum values of drag are shown in Sketch (r)

sketch (r) for m =0, 1, 2.

With the further restraint that the wings be real, the minimum values
of drag changed by the amount shown in the sketch. In this latter case
the upper wing was always a flat plate. If spanwise variations were to
have negligible effect, the solid line in the drag curve would apparently
be near Ward's minimum (ref. 6), while the dashed line would be near the
minimum for real wings.

Ames Aeronsuticel Leborsastory
Nationgl Advisory Committee for Aeronsutics
Moffett Field, Celif., Dec. 20, 1957
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